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How animals interact collectively in groups is of interest for both ecologists and engineers, both from a mechanistic and functional point of
view. A property of some large animal groups, regardless of their size, is their ability to perform highly coordinated anti-predatory reactions
that can progress through entire groups. We developed a method using a true 3D sonar to quantify these behavioural waves in free-ranging
fish schools, utilizing that rapid changes is backscattering strength is caused by changes in fish orientation rather than changes in density.
Both simulated and real data were used for evaluation of the method. The method reliably estimated the speed of a simulated turning wave
propagating through the school, and tests on real data gave similar wave speeds as observed in smaller scale experiments. In cases where the
schools were highly irregular and dynamic, the results were less reliable. These cases were identified by high sensitivity to the classification par-
ameters. Until now, the existing methodology has been restricted to small scale laboratory experiments or qualitative observations. Our ap-
proach provides a tool to validate the generalizations that are usually extrapolated from small scale tank studies, and we discuss its potential
use.
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Introduction
Fish schooling is a remarkable example of collective behaviour,

and the phenomenon has been a field of scientific focus since

Parr’s seminal paper almost 100 years ago (Parr, 1927). How fish

organize and maintain schools from a mechanistic basis to a

functional role in predator avoidance and survival is still an active

field of research (Hofmann et al., 2014). It has been shown how

animal groups can move in unison (Buhl et al., 2006), self-

organise and form complex dynamic patterns (Ballerini et al.,

2008; Cavagna et al., 2010), make collective decisions (Couzin

et al., 2005), increase their swimming efficiency (Hemelrijk et al.,

2015), or collectively sense, and follow environmental gradients

(Berdahl et al., 2013).

A question of particular interest is how individuals within

schools or flocks transmit and receive information between mem-

bers of the group. When looking at the patterns from schools and

flocks, the level of synchrony is truly mesmerising. When one fish

reacts, either spontaneous or to a threat, the reaction spreads

through the school making the other individuals aware. These be-

havioural waves, or “waves of agitation” (Radakov, 1973), moves

faster than the swimming speed of fish and allows the signal to be

transmitted efficiently through the school. This signalling do also

occur in insects and was coined the Trafalgar effect (Treherne

and Foster, 1981) referring to how the English ships communi-

cated using signal flags during the battle of Trafalgar.

Modelling the interactions between individuals and evaluating

the emergent properties have been a common strategy when

studying this phenomenon (Lopez et al., 2012). The models are

commonly inspired by physics and the interactions between indi-

viduals are usually modelled as physical “forces” where the forces

represent one individuals’ influence on another. An early imple-

mentation of an individual based computer model was made in

1987 (Reynolds, 1987), where the different “forces” were imple-

mented as attraction, repulsion and alignment and the reaction to
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a predator was modelled as a strong repulsive force. Similar

approaches have been used for schooling fish (Huth and Wissel,

1992) and schools attacked by predators (Vabø and Nøttestad,

1997). These classes of models usually assumes homogeneity in

how the different agents influence each other, either by assuming

a sphere of influence or a fixed number of influencing agents

(Ballerini et al., 2008), and data from video analysis and auto-

mated tracking algorithms have been used estimate the zones of

influence (Herbert-Read et al., 2011; Katz et al., 2011). More re-

cently, data on the individuals that influence the group have be-

come available (Nagy et al., 2010; Rosenthal et al., 2015), and

there are more heterogeneity than assumed in the earlier models.

These recent advances have been made possible by developing

novel observation methodology, both for tank experiments and

in situ observations, and it is likely that improved observation

methods will further support this development.

For aquatic systems, the principal challenge to using optics is

visibility, restricting it to laboratory studies (Katz et al., 2011),

smaller scale mesocosm studies (Marras et al., 2012) or tracking

of near surface schools. However, due to favourable propagation

properties in water, active acoustic systems have been successfully

applied to observe marine life (Benoit-Bird and Lawson, 2016),

from vertical aggregation patterns in spawning cod (Gadus

morhua) using echo sounders (Sund, 1935), school structure and

distribution using fisheries sonar (Fréon et al., 1992; Misund,

1993; Pitcher et al., 1996), fine scale predator prey interactions

and dynamic schooling behaviour using acoustic imaging

(Axelsen et al., 2001; Handegard et al., 2012; Rieucau et al., 2015),

structure and information transfer in marine schools (Gerlotto

et al., 2006), to large-scale compressional forming waves of oce-

anic shoals (Makris et al., 2009).

Acoustic reflection from a fish varies with the frequency of the

incoming sound pulse but is also highly dependent on angle of

ensonification, where a weak acoustic reflection is generated

when ensonified head or tail on as opposed to side aspect (Lilja

et al., 2004; Pedersen et al., 2009; Holmin et al., 2012). This is

what caused the behavioural waves to be observable in (Gerlotto

et al., 2006), where they visually tracked this wave using a 3D

sonar (two spatial dimensions and time). Changes in fish volu-

metric density will also cause changes in acoustic backscatter

(Jagannathan et al., 2010; Bertsatos and Makris, 2011), but this

occurs on a different time scale and is bounded by the swimming

speed of the fish. Changes that occur on shorter temporal scales

than those that can be explained by fish density can thus be

attributed to changes in orientation of the fish. This can be ex-

ploited to estimate information transfer in wild fish schools.

Currently there is no methodology beyond simple visual track-

ing that allows the estimation of these behavioural waves in free-

ranging fish schools in the open ocean in time and 3D space. The

objective of this paper is to present a methodology capable of ex-

tracting the large scale behavioural waves seen in wild fish school

using a 4D multi beam sonar (Ona et al., 2009), where three spa-

tial dimensions are ensonified at each time step, and the waves

are estimated in 3D and time.

Materials and methods
The concept
The concept utilizes the fact that the ensonification angle of the

fish relative to the sonar changes when a wave of turning pro-

gresses through the school. This causes the backscatter to change

rapidly, and when the change in backscatter occurs on a temporal

scale that is shorter than changes due to fish movement, the

change can be attributed to a turning event, as opposed to density

changes.

Properties of the sonar
The sonar used in this study was the Simrad MS70 multibeam

sonar (Kongsberg Maritime AS, Horten, Norway), but the

method is general and can be applied to any sonar system that is

sensitive to backscatter changes due to orientation changes. The

MS70 has 500 individual beams set up in 20 horizontal fans. Each

fan operates at a different frequency and is comprised of 25 indi-

vidual beams spanning 60� horizontally. The 20 fans are uni-

formly spaced to cover 45� vertically, where the lowest fan

operates at 112 kHz and is directed 45� downward and the upper-

most fan operates at 75 kHz and is directed parallel to the water

surface (Ona et al., 2009; Holmin et al., 2012). The pulse repeti-

tion interval in this study was on average 1.7 s.

The sonar output is calibrated volume backscattering strength

svðijtÞ (Maclennan et al., 2002) resolved in range interval i and

time step t for each sonar beam j. Each sv value depends on the

number of fish, the mean fish orientation, and the acoustical

properties of the fish within a voxel volume of V ðijtÞ. The voxels

are disjoint 3D volume elements defined by a 3D spherical grid

comprised of range from the sonar and azimuth and elevation

angle defined by the directions of the beams. The extent of the

voxels along the beams is constant (0.38 m, given by the acous-

tical sampling interval duration), whereas the extent across the

beams increases linearly by range (�10 m at 250 m range), result-

ing in higher resolution along than across beams at longer ranges.

Due to the elongation of the voxels of the sonar, classical inter-

polation of the midpoints of the voxels into a cubic Cartesian

grid is not trivial, with a large variation in the number of voxel

midpoints located in each grid cell. Instead, we took a different

approach where the acoustic energy is distributed throughout

each voxel of the sonar and subsequently accumulated in each

voxel of a georeferenced cubic Cartesian grid. The grid is repre-

sented by the three spatial dimensions (x, y, z) and time, with in-

dices k; l; m, and t , respectively (c.f. SI for details). This method

preserves the effect of elongated voxels, but includes a random

component that introduces some variability in the gridded back-

scattering strength sv klmtð Þ. A grid spacing of Dd ¼ 5m was used

in all cases.

Filtering, segmentation, and “school volume”
A smoothing spline is used to filter the data. The filtering is

applied along the three spatial dimensions using a smoothing

procedure for uniformly sampled datasets (Garcia, 2010). The fil-

ter is applied in space for each time step separately and the fil-

tered values are denoted s0v. The algorithm is robust towards

outliers. The degree of smoothing needs to be fairly high to pick

up the larger scale patterns, and we used a manually set smooth-

ing parameter p as input to the smoothing spline algorithm. The

resulting data is a smooth version of the echo energies within

each voxel.

The next step is to identify the voxels with strong backscatter

to those with no fish or low backscatter due to the fish orientating

away from the transducer. To do this the smoothed s0v values are

thresholded:
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B klmtð Þ ¼
0 if s0v < h

1 if s0v � h
;

(
(1)

where h is determined by minimizing the intraclass variance of

the set of voxels for classes defined by B (Otsu, 1979); using the

Matlab function graythresh. The value h is calculated for each

ping in segments of N pings, and the median h over the N pings

is used in the subsequent analysis. The value of N can be inter-

preted as the number of pings we track the surface of one particu-

lar echo energy level, see edge tracking below. In our test cases N

is equal to the duration of the data sets.

The volume defined by the surface of constant h (where B ¼ 1)

is determined by summing B over the three spatial dimensions

and multiplying by ðDdÞ3. When the volume increases or de-

creases on a short time scale for a fixed h, while assuming station-

ary density, an increasing number of fish are oriented broadside

or head/tail on to the sonar, respectively. This is an indicator of

strong internal dynamics in the school and can be used as a global

and robust metric of internal fluctuations in a school.

To detect and calculate the speed of a behavioural wave pro-

gressing through the school, we first connect the voxels that are

above the threshold (B ¼ 1) using a full 4D connectivity matrix

structure, i.e. any adjacent (in terms of both surface and corners)

voxels in any dimension (including time) are connected to one

cluster of connected voxels (using the Matlab function bwconn-

comp). The sub sets of B ¼ 1 that form these connected clusters

are denoted Bi where i denotes the cluster number. If the voxels

are connected in time, they belong to the same school and any

voids that appear on short time scales within that cluster are

attributed to orientation changes. If two separate clusters/schools

are in the field of view of the sonar, they are treated as separately

in the following analysis. This approach avoids overestimation of

the waves in case one school disappears entirely and the boundary

of the lost school is associated with that of the remaining school.

If two separate clusters in a single time step are connected at

later time steps, they belong to the same cluster. This may cause

overestimation of the track velocities if one part of the cluster dis-

appears and gets tracked to the other part (see explanation of

method below). For large schools with several sub clusters this

will cause challenges, but in those cases it is also difficult to reli-

ably associate changes in backscatter to a propagating wave al-

though internal structure may be highly dynamic. For these cases

the change in volume may be used a measure of the internal

fluctuations.

When a propagating turning wave progresses through the

school, the change will be visible as a moving surface of constant

h. An estimate of the wave is found by estimating the velocity of

the surface (Figure 1). To do so, we first detect the voxels that are

on the surface of the connected structure Bi. The surface voxels

are defined as those voxels that have less than six adjacent neigh-

bours. Here adjacent means voxels that share a surface as opposed

to the connectivity algorithm where it could also share a corner

of a voxel. Voxels intersecting with the edges of the sonar volume

is excluded from the set of surface voxels to avoid tracking the

edge of the sonar as a turning wave, e.g. if the vessel is turning.

This results in a set of surface voxels for the edge tracking for

each connected structure Bi.

To track the surface, we start at the central position of each

surface voxel at time step t. The surface voxel j belonging to each

sub structure Bi for time step t is denoted xit ðj; 0Þ, where “0”

indicates that this is the initial positions for the surface tracks.

The tracks are then formed by finding the nearest surface voxel in

the subsequent time step, with position xit ðj; 1Þ, where “1” de-

notes that we have moved one time step ahead. This is repeated

for M time steps resulting in a track of surface voxels over M þ 1

time steps. The parameter M denotes how many time steps the

surface is tracked before estimating a velocity. M > 1 is used to

Figure 1. A conceptual school at two consecutive pings (a,b) and a
real example (c) to illustrate the method. The fish alignments are
indicated by the arrows and change from (A) to (B), and the
resulting surface formed by the segmented volume Bi for each time
step is depicted by the solid black line. The broken lines are the
segmentation volume in the following (A) or previous (B) time step,
respectively, to illustrate how the forward (F) and backward (BW)
tracking work. In (A), the green and blue pixels are the gained and
lost pixels between (A) and (B), respectively, and the yellow lines
show two F tracks where the yellow dot is the starting point. In (B),
the green and blue pixels are the gained and lost pixels between (B)
and (A), respectively, when tracking BW (opposite of A). The cyan
arrows show two (BW) tracks for illustration. In this particular
example, the forward tracks (yellow) works as anticipated while the
backward tracks (cyan) underestimate the change of surface. (C)
Real data example. Blue pixels are pixels that are lost in the next
time step, green pixels are gained the next time step and red pixels
are within the volume in both time steps. The yellow and cyan lines
are the F and B tracks, respectively, where the dots indicate the
starting position, similar to (A) and (B). Note that the ending
position does not have to be in the same plane, and that is the
reason why the tracks do not necessarily end in a red or cyan pixel.
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avoid random back and forth fluctuations to be detected as a

propagating wave, whereas using M ¼ 1 might be used if the

waves are fast compared with the ping rate (but this is vulnerable

to noise). If M is too large the method will not discriminate be-

tween density changes and orientation changes. This results in a

set of surface trajectories for each surface voxel in time step t, and

the mean velocity is representative for time step t þ 1
2

M (half

time steps implies average time of consecutive time steps).

The tracking of the surface works well if the shape of the

boundary is convex or close to convex (Figure 1A and C), but

this is not always the case. If the fish turn such that the boundary

moves away from the centre of the school (Figure 1A, left part),

the starting point of the wave will not be clearly defined, and the

concave shape may close causing overestimation of the speed.

These shapes are typically sensitive to the thresholding parameter,

and can be detected by checking the sensitivity to the threshold-

ing parameter h. In other cases the forward tracking will under-

estimate the wave since the nearest surface voxel may be in a

different direction than the wave propagates. This is dealt with by

running the algorithm both back and forth over the M pings, re-

sulting in two sets of surface tracks, from both forward and back-

ward tracking (Compare Figure 1A and B).

When all the trajectories are established for the range of M

pings, the mean velocity for each trajectory is calculated, and the

highest speed among the forward and backward trajectories is se-

lected as the wave speed for that time interval.

The next time step (t þ 1) is then selected and the procedure is

repeated.

Results
To assess the efficacy of the method, we used both a simulation

experiment (Case I) and tests on real data (Cases II and III). The

simulation experiment was designed to evaluate whether the

method works on a simulated information transfer wave pro-

gressing through a school, and the real test cases were picked to

illustrate different aspects of the method’s performance.

Simulation experiment (Case I)
The advantage of a simulation experiment is that it allows for

control of the underlying mechanism that generates the data. To

do this, we simulated a school of individual herring with initial

orientation perpendicular to the sonar beam (Figure 2A). The

fish were randomly distributed in an ellipsoid with semi axes 50,

35, and 10 m in the x, y, and z direction of the global coordinate

system, centred at 150 m depth. An autoregressive component

was added to the positions of each fish, inducing a desired polar-

ization of 16.9�, i.e. the mean angle deviation between orientation

of the individuals and the school (Parrish et al., 2002). We did

not include any interaction between the fish, but any individual

based model taking such interactions into account could have

been used to predict the resultant scattering. After five initial time

steps, a turning wave started at x¼�50 m progressing at a speed

of 15 m/s across the school towards positive x (see Figure 2B).

The fish inside the wave were turned by 60� away from the vessel.

After four time steps the wave stopped, followed by five time

steps with stationary fish orientation.

The corresponding acoustic signal was generated using a simu-

lation framework for acoustic data including noise (Holmin

et al., 2016), where the contributions of the individual fish to the

total echo was summed and where the interference scattering was

taken into account. The individual herring were represented

acoustically by prolate spheroids (Tang et al., 2009) with an as-

pect ratio of 5 (corresponding to oblong fish, used by Holmin

et al., 2012, 2016), resulting in highly directional backscatter, as

observed for real herring (Pedersen et al., 2009). Extinction,

which is the weakening of the signal due to high fish density

(Zhao and Ona, 2003), was not taken into account in the version

of the model used in this article. The resulting backscattering

caused the school to “disappear” starting from x ¼ �50 at time

step 5 as the wave progressed through the school (Figure 2B).

The methodology was applied to the test data set to assess

whether we could reliably estimate the wave speed of 15 ms�1

from the simulated data. The first step was to convert the data to

Cartesian coordinates (see SI), smooth the data, and segment the

high backscatter parts of the school used in the edge tracking al-

gorithm. A smoothing of p ¼ 0:2 was used and the threshold

used for the segmentation was estimated by Otsu’s algorithm as

described in the method section. The resulting segmentation is

shown Supplementary Figure S1. Since these values may affect the

performance of the algorithm, the sensitivity to these parameters

was assessed by generating the results for a range of the param-

eters, similar to a sensitivity analysis. The smoothing parameter

was set to p 2 f0:1 0:2 0:3g, whereas the threshold estimated by

Otsu’s method was multiplied by a factor of k 2 f0:8 1:0 1:2g.

Figure 2. Example of simulated data at time step 1 (a) and time
step 8 (b). The red lines are the direction of the fish and the density
of the black dots is proportional to the estimated backscatter. The
effect of fish orientation is clearly seen as the turning wave
progresses through the school (B).
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The edge tracking algorithm was applied to the data from the

classification algorithm. The parameter M was set to 3, which

caused the edges of the first time step to be tracked backwards

and forward over the three following time steps. The gradual in-

crease in the speed was caused by averaging over fourr-time steps

(M ¼ 3), and that is the reason for the discrepancy between the

estimated and the real speed (Figure 3A). In addition, the volume

of the segmentation for each time step was calculated (Figure 3B)

to assess the reliability of the segmentation algorithm and to re-

late it to the wave estimates. As expected, the reduction in volume

corresponded to the estimated behavioural wave speed.

Furthermore, the sensitivity to the smoothing parameter was low

for both the wave speed and the volume, which indicates consist-

ent results for different levels of smoothing. The sensitivity to the

shift in threshold was low for the wave speed, whereas the change

did affect the segmented volume. This was expected since a re-

duction in threshold will cause the segmented volume to increase.

However, the important property is how it changes, and trends in

volume change remained consistent.

Testing on real data
The method was applied to two datasets of MS70 data observing

herring, aboard RV “G.O. Sars” in the Norwegian Sea (Cases II

and III). The schools were migrating to overwintering areas along

the coast of Northern Norway, and were under high predation

pressure from fishing vessels and whales. Killer whales (Orcinus

orca) were observed attacking a different school some hours be-

fore Case III. Weather conditions were calm in both cases, result-

ing in low surface scattering. No irregular noise from whales or

from other vessels was observed. Both cases included turning

events (Figure 4), where Case II included a large and highly struc-

tured school whereas Case III was a more distinct school.

For Case II, the school was �300 m in diameter, located at 50

m depth, and was observed by passing the school for 3 min in a

south-southeast direction several hours past sunset on 16

November 2009. The school was entering the sonar volume dur-

ing data collection, causing partial coverage of the school and an

increase in the total backscatter with time (Figure 4E). The vari-

ations in backscatter indicate a school that is in a highly dynamic

state. The short observation period disallowed estimation of the

direction of movement of the school.

In Case III the school was �100 m in diameter, located at 150

m depth, and was observed by circumnavigating the school for

several rounds during one hour at an approximate distance of

300 m, just before sunrise on 17 November 2009. The school

moved at an approximate speed of 1.0 m/s towards northeast,

possibly affected by the sea current. The reduction in the total

backscatter from incidence angle �90� (school observed from

south) to 0� (school observed from east) (Figure 4F) indicates

that the individuals were oriented east-west.

For both cases, 20-time steps were selected (UTC 15:38:37–

15:39:08 for Case II and UTC 09:06:50–09:07:22 for Case III), and

the data were processed in a similar manner to the simulated

data, including coordinate transformation, smoothing and seg-

mentation, followed by edge tracking (Supplementary Figures S2

and S3) and final speed estimation (Figure 5).

For Case II, when following the internal changes by viewing

one depth slice (Supplementary Figure S2), there is an initial in-

crease in segmented volume, indicating that the fish are increas-

ingly orienting themselves perpendicular to the sonar beams and

hence leading to an increase in total backscatter. This growth in

area is consistent with a wave spreading outwards. However,

from ping 9 and onwards, another part of the school appears that

is not directly connected in space. Since this part is connected to

the same segmentation volume at later time steps, this causes an

overestimation of the velocities since the tracks jump across the

open space. The segmented volume increases over the time series

showing that there are substantial fluctuations, but the changes in

volume cannot be clearly be attributed to the estimated turning

wave speeds.

To evaluate the quality of the speed estimates, the sensitivity of

the estimated wave speeds are used (Figure 5A). The wave speed

estimates seem relatively stable over the parameters except for

some large deviations between 10 and 20 s associated with the ap-

pearance of parts of the school, and some deviations also towards

the end of the time series. Similar to Case I, the sensitivity of the

estimated volume is directly dependent on the threshold, but

shows the same trend for the three factors k 2 f0:8; 1:0; 1:2g.
Case II demonstrates that the wave estimation fails when seg-

ments are connected over larger distances via connected voxels in

later time steps, but that the sensitivity metrics picks this up and

can be used to flag the cases where the method fails. Furthermore,

changes in the volume of the segmented voxels seem to be a reli-

able indicator of internal fluctuations in the school.

In Case III, the school is fully ensonified by the sonar

(Figure 4C and D). There is a “vacuole” opening up in the sonar

image progressing from the lower left corner towards the middle

of the school (Figure 4D). When following one depth slice in the

school (Supplementary Figure S3), there is a clear expansion fol-

lowed by a reduction in the segmented volume. The increase and

decrease is gradual, indicating a wave-like phenomenon. The

wave speeds (Figure 5B) show two peaks of �10 m/s, and the sen-

sitivity to the parameters are low indicating that the pattern is

Figure 3. The estimated wave speed (a) and segmented volume (b).
The speed used in the simulations of the turning wave is shown in
the straight black lines (A). The effect of the decreased, base line and
increased segmentation threshold (multiplied by k ¼ 0.8, 1, and 1.2
is shown as dark grey, black and light grey lines, respectively, whereas
the dots denotes increased or decreased level of smoothing for each
segmentation threshold, respectively. Note the reduction of volume
as the turning wave causes the segmented volume to decrease.
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robust to the choice of parameters. The peaks are associated with

the expansion and reduction in segmented volume and are based

on the forward and backward tracking, respectively. The seg-

mented volume shows a peak after the initial expansion

(Figure 5D), and the slope of the volume curve matches the vel-

ocity estimates well, i.e. high velocity corresponds to a steep in-

crease or decrease in volume. Case III demonstrates that the wave

estimation works well when there is a gradual increase in seg-

mented volume, similar to the simulation case (Case I). It also

shows that the sensitivity metrics work well as a quality indicator

of the results.

Discussion
Our primary objective was to develop a methodology capable of

extracting large scale behavioural waves in wild fish schools using

4D multi beam sonar. The method reliably estimated the waves

when a clear expansion/reduction was seen, but was less effective

when large and possibly independent fluctuations caused larger

segmentation volumes to be lost or gained between time steps. In

those circumstances, the sensitivity test can be used to flag the

unsuccessful cases. Since the method was capable of resolving the

waves in a more quantitative way compared with earlier studies,

the objectives set out in the introduction were met.

A further evaluation of the method can be achieved by com-

paring the wave speeds with the estimates from previously pub-

lished work. In tank observations of collective behavioural

responses of schooling herring, the speed of information transfer

has been measured to be 6.7 m/s (Marras et al., 2012). These

measurements were carried out in a tank of 10x6x1 m on 50 indi-

vidual fish. In natural conditions, the speed of information trans-

fer, or” waves of agitation”, in schools of Peruvian anchovy

(Engraulis ringens) exposed to predation was estimated to be 7.45

m/s (Gerlotto et al., 2006). Another kind of “wave” is the forming

speed of large-scale schools of herring at a speed of 3–3.5 m/s

quantified using low-frequency acoustics (Makris et al., 2009).

The group movement in this case was typically 0.18 m/s, and the

Figure 4. The real-data test-case examples II (left column) and III (right column), showing time step 3 (a) and 4 (c) for case II and 11 (b) and
14 (d) for case III, and the total backscatter for each case (e and f). (A–D) show 3D plots seen from above, where each black point represents
a backscattering cross section of 3 � 10�3 m2, blue lines indicate the sonar beams, and the lines graded from yellow to orange and cyan to
blue are the forward and backward tracks, respectively. The tracks are representative of the mean time of the plotted and the previous time
step. (e and f) show the total backscatter of the school plotted versus incidence angle to the school, where at 0� and 90� the vessel is located
east and north of the school, respectively. The 20 selected time steps are indicated in black for both cases.
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school forming speed was caused by the aggregation formation

rather than behavioural changes like a wave of agitation. Our

peak speed estimate was �10 m/s in the successful application

(Case III), which is the same order of magnitude as these earlier

studies. The wave speeds in the case studies fit the results from

previously published work, but is capable of dealing with true 3D

observations or larger spatial scales compared with earlier work.

Future expansion of the method could include tuning and op-

timization of the segmentation algorithm, particularly on how

the segmentation method deals with overall changes in backscat-

tering strength. This is not critical for short test cases as presented

in this article, but should be a topic of attention for long duration

data sets with substantial changes in overall backscatter through-

out the data set. It is also worth noting that some ensonification

angle-changes cause a stronger shift in the signal leading to

clearer definition of the waves as opposed to other angles, and

that there is a 180 ambiguity if large orientation changes occurs.

In addition, the 60� horizontal and 45� vertical range of the ob-

servation volume of the sonar may result in variations in back-

scatter throughout a school even when all fish have a common

mean orientation. Finally, the detectability of short distance

waves will be reduced by range from the sonar, due to the de-

crease in resolution of the acoustic data across beams by increas-

ing range. In addition, a low pulse repetition rate and high M

may underestimate the speed of the waves. All these effects may

bias the frequency of occurrence of the waves, but the wave speed

estimates themselves should be robust. Noise in the data could

potentially be detected as behavioural waves by the method, but

then the noise must be spatially correlated and move through the

sonar volume over several time steps, which is not likely.

The noise can, however, mask the wave speed estimates if the

difference in backscatter between the school and the noise is low,

resulting in fluctuations in the boundary of the segmentations.

As opposed to earlier methods, our method works on three

spatial dimensions and enables investigation into the vertical

structure of the school. Earlier more manual methods have been

restricted to two spatial dimensions and time (Gerlotto et al.,

2006; Handegard et al., 2012). Our method allows for testing of

whether waves progress in the vertical dimension as well as the

horizontal (Figure 4, Supplementary Video). We have estimated a

single maximum wave speed for the school to illustrate the

method, but the method supports development of a more com-

prehensive 3D analysis of the data.

In particular, application of the method can serve to quantify

group responsiveness of wild fish schools exposed to various ex-

ternal factors such as predators, environmental perturbations or

anthropogenic disturbances. The method can be used to scale up

and validate controlled experiments on noise playbacks

(Handegard et al., 2014, 2016), predator awareness (Rieucau

et al., 2016a, b), density dependent escape responses (Rieucau

et al., 2014), and would help ascertain the proximate mechanisms

that underlie the transfer of information in massive schools

(Rosenthal et al., 2015). Applying the method on simulated data

based on state-of-the-art IBMs, and comparing the results to

those of wild fish schools, can be used to evaluate the ability of

the IBMs to predict the collective maneuvers of real schools.

These applications of the method would ultimately shed light on

the selective pressures that have shaped the formation, mainten-

ance and reactions of massive schools in marine fish.

Our method could also have applied ramifications.

Understanding the variability in side-aspect backscattering

processes (Pedersen et al., 2009) can be used to improve

Figure 5. The estimated wave speeds (a,b) and segmented volumes (c,d) for Case II (A,C) and III (B,D). The effect of the decreased, base line
and increased segmentation threshold (multiplied by k ¼ 0.8, 1, and 1.2) is shown as dark grey, black, and light grey lines, respectively,
whereas the dots denotes increased or decreased level of smoothing for each segmentation threshold, respectively. Note the difference in
volume as the turning wave causes the segmented volume to change.
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understanding of biases in fisheries independent acoustic surveys

(Løland et al., 2007), especially biases related to fish distribution

and behaviour (De Robertis and Handegard, 2013) using hori-

zontally looking sonars.

Methods to observe the collective behavioural mechanisms in

situ are particularly important. Until now, existing methodology

was restricted to small scale laboratory experiments or qualitative

observations, and although the level of detail is less our approach

provides a method to validate the generalizations that are usually

extrapolated from small scale tank studies. The proposed method

can do this, and is thus an important building block when apply-

ing the knowledge of the structure, dynamics and function of fish

schools acquired from small scale experiments to natural

environments.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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